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Laminar flow through slots is investigated using a flow-visualization technique and 
the numerical solution of the Navier-Stokes equations for steady flow. In the flow 
situation studied here, the fluid enters an upper channel blocked a t  the rear end and 
leaves through a lower channel blocked at  the front end. The two channels are 
interconnected by one, two and three slots. The flow-visualization technique 
effectively brings out the various features of the flow through slot(s). The ratio of the 
slot width to the channel height wlh  is varied between 0.5 to 4.0 and the Reynolds 
number Re, based on the velocity a t  the entry to the channel and the height of the 
channel, is varied between 300 and 2000. Both wlh and Re influence the flow in 
general and the extent of the regions of recirculating flow in particular. The Reynolds 
number at which the vortex shedding begins depends on wlh.  Computations are 
carried out using the computer code 2/E/FIX of Pun & Spalding (1977). The 
computed flow patterns closely resemble the observed patterns at various Reynolds 
numbers investigated except around the Reynolds number where the vortex 
shedding begins. 

1. Introduction 
Flow through slots is of considerable practical interest. It serves as a first step in 

the analysis of the flow through gas-turbine combustion-chamber walls, engine 
valves, slots in ejectors, in partition walls of underground tunnels, ete. Using a 
complex-variable technique Saddoughi (1982) developed the solution of potential 
flow through a slot in a horizontal channel. Tulapurkara et al. (1986) have extended 
this solution to flow through multiple slots. When the results of this potential-flow 
solution are compared with measurements, they find significant differences in the two 
flow patterns, especially beyond the slot(s). The differences are due to the fact that 
in the real flow situation the flow separates a t  the lips of the slot and regions of 
recirculating flow are found there. These regions cannot be predicted by potential- 
flow theory. To gain a better insight into the flow phenomenon, the laminar flow 
through slots is investigated experimentally and theoretically. 

The configuration of the slot investigated in this study is shown in figure 1 (a ,  b ) .  
The flow enters an upper channel blocked a t  the rear end and leaves from a lower 
channel blocked a t  the front end. The flow can be expected to separate a t  points A 
and B (see figure l a )  and a t  some point on the side passing through the corner C, 
(figure i b ) .  The shear layers that separate a t  points A and B would reattach on the 
downstream side, giving rise to zones of recirculating flow. Now, for the flow 
situations where separation points are fixed, for example flow past a sharp-edged 
bluff body or sudden expansion, the flow phenomenon is independent of Reynolds 
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FIGURE 1. The test arrangement : ( a )  schematic arrangement of slot : (21) regions 
of recirculating flow. Dimensions in mm.  

number when the latter is sufficiently high. But a t  low Reynolds numbers the 
separation, downstream reattachment and the structure of the recirculation region 
do depend on Reynolds number. Analogously, i t  can be expected that the separation, 
the extent and other details of the zones of recirculating flow formed aft of points A 
and B, would depend on the Reynolds number when it is low. Another variable which 
could influence the flow conditions considerably is the relative slot width wlh. It 
would be very interesting to see the influence of these two parameters, viz. Re and 
wlh,  on the flow field through the slots. With a multiple slot configuration (which 
could be obtained by introducing plates in the width w), the flow field would be 
further complicated. Probably the most interesting aspect of this kind of flow is the 
way in which the approach flow would divide through these slots, and the consequent 
influence on separation and the extent of recirculating flow regions. The aim of the 
present investigation is to look a t  some of these in a systematic way when the flow 
is laminar. 

Laminar flow occurs only at rather low Reynolds numbers but it is difficult to 
carry out accurate measurements of the velocity field a t  these low Reynolds 
numbers. Hence to study the flow situation experimentally, a flow-visualization 
study has been carried out in a water channel a t  various Reynolds numbers and slot 
widths. A theoretical solution has been obtained by numerically solving the 
Navier-Stokes equations for steady flow using the computer code given by Pun & 
Spalding (1977) in a suitably modified form. The observed flow patterns are 
compared with those obtained from computation and the important features are 
discussed. 

2. Flow-visualization study 
2.1. Experimental set-up 

The cxperiments are carried out in a recirculating water channel. The facility consists 
essentially of a tank 2.5 m x 1.5 m with a depth of 150 mm (figure 2). At one end of 
the tank there are two sets of aluminium disks (vanes) with suitable spacing in 
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FIGURE 2.  Schematic view of the flow-visualization tank. Dimensions in mm 

between. When these vanes are rotated, they act as paddles and create a flow in the 
tank. The flow is guided to the test section where the model is placed. The vanes are 
rotated by a variable speed d.c. motor which enables one to achieve a fairly wide 
range of flow speeds in the test section. The fluid in the tank is water and fine 
aluminium powder is used as tracer medium. Photographs are taken by mounting the 
camera a t  a suitable location above the model, which is lit using halogen lamps. 

The flow situation used is shown in figure l(a). The channels have a height of 
25 mm (h = 25 mm in figure lu) .  The slot width w is varied between 12.5 to  100 mm 
to give the ratio wlh between 0.5 to 4. This charge in urlh is obtained by shifting the 
lower channel relative to the upper one. The lengths of 245 mm and 500 mm shown 
in figure 1 (a )  are maintained in all cases by adding suitable lengths to the upper and/ 
or lower channel. 

The Reynolds number, based on the channel height h and the velocity in the entry 
region of the upper channel, is varied between 300 and 2000 by controlling the 
velocity in the entry region. The velocity is obtained by measuring the time taken 
by a marker particle to travel a specified distance. 

When the flow passes through a slot, the flow field can be characterized by the 
separation and reattachment zones as shown in figure l ( b ) .  The extents of these 
regions are given by the lengths L,, L, and L, (figure 1 b) .  The Reynolds number and 
relative slot width w/h are varied systematically and these lengths are determined 
from the photographs. Multiple shots are taken when the reattachment point(s) is 
found to change with time and an average value of the attachment distance is 
calculated. The camera speed in most of the cases is Q s. In  some cases a speed of 
a s is also used and in all such cases the speed is indicated in the figures. 
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2.2. Results and discussion 

22 .1 .  Single-slot case 

A large number of photographs were taken to systematically study the influences 
of Reynolds number Re and relative slot width w l h  on the flow pattern. 
Representative photographs are presented in figures 3-5. The variations o f  lengths 
L,, I,, and L, with Re and wlh  are presented in figures 6 and 7. These values of L,, 
L, and L, are obtained from photographs. In all cases L, and L,  could be measured 
without much ambiguity. but in many cases it was dificult to obtain L, accurately. 
Hence L, and L, are plotted for all cases studied but L, is plotted only when it could 
be measurcd with reasonable confidence. These and other features of the flow 
patterns are discussed below. 

Influence of Reynolds number. The set of photographs in figure 3 show the influence 
of Reynolds number a t  constant value ofw/h  ( =  1). At low Reynolds numbers, below 
about 400, the flow is steady everywhere including the regions of recirculating flow 
(figure 3a, b) .  At Re = 300 (figure 3 a )  the recirculating region near corner C, (see 
figure I b for locations of corners C,, C, and C,) has a depth (d, in figure 1 b )  of about 
0.35h and length of  about 1.4h. The recirculating region near corner C, has a length 
almost equal to h. The extent of the recirculating region near corner C, is not clear 
a t  this Reynolds number. As the Reynolds number increases from 300 to 400 the 
recirculating region near corner C, increases in depth and in length (figure 3 b ) .  As 
seen in the photograph the large recirculating region near corner C, reduces the 
effective area of the channel in that region and the flow undergoes a significant turn. 
With furthcr increase in Re the separation bubble near the corner C, does not 
remain stable and vortex shedding begins (figure 3c, d ; Re = 600 and 800) - the fluid 
particles comprising the recirculating region do not remain there ; they come out of 
the recirculating region and join the main stream. New fluid particles take their 
place, but they also leave after some time and this goes on with regular periodicity. 
After the vortex shedding begins, the depth of the separated region near corner C, 
decreases. With further increase in Re, the vortex shedding also starts near corner 
C, (figure 3e, Re = 1330). At still higher Reynolds number vortex shedding starts 
even near corner C, (figure 3f ,  Re = 2000). After the vortex shedding has begun, the 
depth of the bubble near corner C, does not change much with Re but the length 
L, increase gradually (see also figure Ba). The shed vortices are dissipated as they 
travel downstream, but the process becomes faster as Re increases and sometimes one 
sees two or three vortices in the separated regions, particularly near corner C ,  (figure 
3 f ) .  

Figure 4 shows the influence of Reynolds number on the flow pattern when w l h  is 
0.5. At Re around 175 the vortex shedding was found to  be practically absent (figure 
4a) .  The vortex shedding starts a t  corner C, as Re increases (figure 4 b ) .  It can be seen 
that the depth of the recirculating flow region near corner C, is larger than that in 
the case with w/h = 1, but the depth does not change much with Re. The length 
L,  increases gradually (figure 6 6 ) .  

The influence of the Reynolds number on the flow pattern for a relatively high 
value of w/h ,  viz. 3.5, is shown in figure 5. At low Reynolds numbers, below about 
800, the recirculating-flow region near the corner C, is absent. The vortex shedding 
begins near corner C, around Re = 1000 (figure 5 d ) .  At higher Re the vortex shedding 
is seen also a t  corner C, and then at corner C,. In this case the recirculating-flow 
region near corner C, is clearly seen a t  various Re. It is interesting to note from the 
photographs in figure 5 that the depth of the recirculating region near corner C, 
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FIGURE 3. Influence of Reynolds number on flow pattern ( w / h  = 1.0). ( a )  Ke = 300, 
( h )  400, (c) 600. (dj  800. (e j  1330. (f) 2000. 
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FTGURE 4. Influence of Reynolds number on flow pattern ( w / h  = 0.5). ( a )  Ke = 175. (6) 300, 
( c )  400. ( d )  600, ( e )  1500, ( f )  2000. ('amera speed is f s for (c ) ,  ( d )  and ( e ) .  
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FIGURE 5.  Influence of Reynolds number on flow pattern ( w / h  = 3 . 5 ) .  ( a )  Re = 300. 
(6) 600, (c) 800, ( d )  1000, ( P )  1500, (f) ,0000. 
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FIGURE ti. Influence of Reynolds number on L,, L, and L,. (a )  wlh = 1.0, ( b )  0.5, ( c )  3.5. Solid lines 
indicate computed values. Symbols denote values from photographs: 0, L J h ;  a, L J h ;  
0. L, /h .  

(depth d, in figure 1 b ) ,  increases up to Re of about 800. As the vortex shedding begins 
near corner C,, the depth d, decreases and then attains an almost constant value a t  
higher Reynolds numbers, Figure 6 ( c )  shows the variation of L,, along with that of 
L,  and L,, with Re. 

Insueme of relative slot width wlh.  The influence of relative slot width w l h  at 
Reynolds numbers of 300, 600 and 2000 was investigated results were obtained a t  
w / h  = 0.5, 1.0, 2.0, 3.0, 3.5 and 4.0. Some of the photographs given in figures 3-5 
bring out this influence. 

At the lower Reynolds number of 300, the flow is steady and there is no vortex 
shedding except for w l h  = 0.5 (figure 4b). As the relative slot width increases the 
region of recirculating flow near corner C, decreases in length and depth and 
practically vanishes for w l h  = 3.0 (similar to that in figure 5a). 

The variations of lengths L,, L, and L, with w l h  are shown in figure 7 for Re = 
300, 600 and 2000. It is seen that a t  Re = 300 and 600, L, decreses with increase of 
w l h  and practically vanishes for wlh = 3. However, for Re = 2000, L,  appears to 
attain a constant value. L, and L, are found to increase with wlh. 

It may be added that too much significance should not be attached to the lengths 
L,, L,  and L,, but they do serve as means of comparing, quantitatively, the results 
of flow visualization with the numerical computations described in $3. 
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FIGURE 7. Influence of wlh on L,, L, and L,. (a) Re = 300, ( b )  600, (c) 2000. Solid lines indicat>e 
computed values. Symbols denote values from photographs: 0, LJh;  0, L,/h; 0, LJh. 

2.2.2. Two-slot case 
In  practical applications slots can occur in a row. Hence configurations with two 

and three slots have also been studied. Figure 8 shows the flow patterns for the two- 
slot case. The widths of the two slots and the length of the plate separating the two 
slots are all equal to the height of the channel, 25 mm. Reynolds number varies 
between 250 and 2000. 

In the two-slot case an additional recirculating flow region, below the plate 
separating the two slots, is seen. At the lowest Reynolds number, viz. 250, the flow 
is steady everywhere (figure 8a) .  At Re = 400 the vortex shedding is seen to begin 
near the downstream end of the plate separating the two slots. At higher Re the 
vortices are shed from all corners; they interact with each other and a seemingly 
complicated flow pattern results (figure 8d- f ) .  

In the two-slot case the total slot width is 3h. Comparing this case and the single- 
slot case with w l h  = 3.0, one finds that when a plate is inserted in a slot, the regions 
of recirculating flow change in size. Thus if a certain configuration of the zones of 
recirculating flow is desired, then a suitable length and position of the plate can help 
in achieving it. 

2.2.3. Three-slot case 
The flow patterns for three equally spaced slots of equal width are shown in figure 

9. The Reynolds number varies from 270 to 2000. There was practically no vortex 
shedding a t  Re around 270 (figure 9a) .  At Re around 400, the vortex shedding 

7 l?l,\l  I90 
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FIGURE 8. Influence of Reynolds number on flow pattern ~ two-slot case. (0) HP = 250, 
( h )  400, (c)  600, (d )  800, ( P )  1330, (f) 2000. 
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FIGURE 9. Influence of Reynolds number on flow pattern - three-slot case. 
( n )  Re = 270, (6) 400, ( e )  600, (d )  800, ( c )  1330. ( f )  2000. 
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appears to take place near the end of the plate separating the first and the second slot 
and the corner near it (figure 9b). At higher Reynolds numbers the formation, growth 
and shedding of vortices in this region becomes more frequent and pronounced. 
Surprisingly this kind of intense vortex formation and shedding is not noticeable in 
other regions of the flow field. 

When the single-slot (w/h  = l ) ,  two-slot and three-slot cases are compared a t  any 
particular Re, it is found that the recirculating-flow region near the corner C, 
decreases (e.g. figures 3d, 8d and 9d or figures 3f, Sf and 9f).  So is the case with 
vortex shedding at this corner. This is possibly due to  two features seen in the 
photographs: (i) the flow velocity near the corner decreases as the number of slots 
increases, and (ii) the angle through which the flow turns a t  the corner also decreses 
with increase in the number of slots. 

3. Computation of flow through slots 
The flow-visualization study clearly shows the presence of regions of recirculating 

flow in the flow field. To compute such a flow field the full Navier-Stokes equations 
should be solved. Pun & Spalding (1977) have developed a computer code 2/E/FIX 
and have successfully computed flow through a pipe, sudden enlargement, etc. The 
name 2/E/FIX denotes a scheme for solving two-dimensional elliptic flow with a 
fixed grid. This code has been modified to compute flow through slots. In the 
subsections that follow, the basic equations and the solution procedure are briefly 
discussed first : then the problem-dependent features like boundary conditions, grid 
etc. are given. These are followed by discussion of the computed results. 

3.1. Basic equations and solution procedure 

The governing equations for a steady, two-dimensional, incompressible flow in 
Cartesian coordinates with standard notations are 

These equations along with boundary conditions are solved in the 2/E/FIX code by 
finite-difference method using staggered grid and upwind difference scheme. The 
computational procedure is an improved version of the algorithm SIMPLE (Semi- 
Implicit Method for Pressure Linked Equations). Some details of SIMPLE are given 
in Caretto et al. (1973) and a clear exposition is given in Vaselic-Melling (1977). The 
salient features of SIMPLE are given below so that the improvements over it in the 
S/E/FIX code can be appreciated. 

The equations ( 2 )  and (3) can be written in a general form as 

a a a ( a i )  a ( 
- (pUi)+-(pVi)--  4- -- 4- =s i .  a x  az- ax a x  az- (4) 

By putting i = U or V ,  = pi’ and Si = - ap/aX or - i3p/aY in (4) we recover (2) and 
(3). Equation (4) can be written in a finite-difference form by integrating i t  over a 
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FIGURE 10. Control volumes: (a )  for p ,  ( b )  for U ,  (c) for 8. 

finite control volume. In  figure 10, the point P is a typical node and E, S, W and N 
are the neighbouring nodes. The points e, s, w and n lie midway between the grid 
nodes. In  the staggered grid used in S/E/FIX the pressure p is evaluated at  grid 
nodes, and U and V are evaluated at  points lying midway between grid nodes (figure 
10a). The control volumes for p ,  U and V are indicated by dotted lines in figure 
10fa-c). 

Integrating over the control volume and using an upwind difference scheme, the 
finite-difference forms of ( 2 )  and (3) are 

where 

The coefficients A: and A! contain convective and diffusive flow rates. a,, a, and 
a: are shown in figure 10. The finite-difference form of (1) is 

(7) 

To obtain a solution, the sets of equations ( 5 ) ,  (6) and (7) must be solved along with 
the boundary conditions. To start the solution, suitable values of U ,  V and p are 
prescribed at  all nodes. A marching integration is then carried out. It involves 
starting a t  the upstream edge of the grid and proceeding line by line towards the 
downstream edge of the grid. The pressures appearing in (5 )  and (6) are not known 
and an iterative procedure is required. Following Patankar & Spalding (1972), 
guessed values o f p  are substituted and the finite-difference equations for U and V 
are set up along a vertical line. When these equations are solved using the Tri- 
Diagonal Matrix Algorithm (TDMA) we get approximate values denoted by U* and 
V*.  Then p',  the difference between the assumed and actual values of p ,  can be 
approximated as (Patankar & Spalding 1972) 

aw(PUP - PUW) + a, (P VP - P V S )  = 0. 

a UV 
U;, = U,-U$ = ? ( p k - p k ) ,  v;, = vp- v; = z ( p ; - p L ) .  

A p" 
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U* and V* would, in general, not satisfy (7).  Let M ,  be the mass imbalance, i.e. 
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Then U', V' and p' are obtained such that M ,  tends to zero or 

a,(pUl,--pU&) +a,(pV',-pV;) = - M p .  (9) 

Substituting for U i  and V ;  from (8) in (9), gives a finite-difference equation for pb,  
along the chosen vertical line. Using TDMA to solve these equations we get values 
of p' along the line. Then Ul, and Vl, can be obtained from (8). 

The residual sources R, and R, arc defined as the difference between the left-hand 
side and right-hand side of ( 5 )  and (6) respectively. If corrected values of U and V 
are exact, then R, and R, will be zero. Computations a t  the chosen line are repeated 
till values of R, and R,, normalized with reference quantities, are below a prescribed 
value. After this is achieved we proceed to the next line till entire flow field is covered. 
This flow field is used as a starting point for the next iteration and this process is 
repeated till convergence is achieved. 

To hasten the convergence of the SIMPLE algorithm the values of U* along a 
chosen line are corrected, in 2/E/FIX, by adding a quantity 6U so that continuity 
across the line is satisfied. If Mi is the mass entering a t  the inlet to the flow domain 
and M ,  is the mass flow across the chosen line obtained using U:', then 6U = 

(Mi -Ms) / (pah) ,  where ah is the height of the flow domain a t  the chosen grid line. To 
correct for any imbalance in the overall momentum, caused by the introduction of 
SU, the values of pressure on the line to the right of the chosen line (the flow being 
assumed from left to right) are changed by a uniform amount 8p. It can be shown 
that 6p = - 6U(Mi + Ms)/a,. 

3.2. Problem- dependent features 

In  the problem being investigated here, the fluid enters the upper channel whose rear 
end is closed. The fluid then enters the lower channel through slot(s) and leaves at  
the exit of the lower channel (figure la). For the purpose of computation a 
rectangular domain, enclosing both the upper and lower channel, is chosen and 
divided into a suitable number of grid points (figure 11). 

3.2.1. Boundary conditions 
Inlet: At the inlet to the upper channel the U-component of velocity is assumed 

to be constant over the cross-section and V-component is taken as zero. 
Outlet: U a t  the outlet plane need not be prescribed, but in order that the flow 

downstream of the exit plane does not affect the flow in the domain of calculation, 
aU/aX is set equal to zero a t  exit. 

Walls: The velocity components U and V arc set equal to zero on the top and 
bottom walls of the upper and lower channels and also on vertical walls forming the 
slot. The middle wall is made to coincide with the nodes of the vertical velocity 
component. The values prescribed a t  the nodes lying outside the flow domain are 
such that they do not affect the calculations a t  the nodes lying inside the flow 
domain. The values of U and V are set equal to zero at  nodes lying outside the flow 
domain. This way the mass flow rate through the duct is not affected. 

To start the computations the values of the flow variables must be prescribed at 
all nodes, using guessed values. 14s initial distributions, U cqual to its valur a t  thc 
inlet and V and p equal to zero are prescribed a t  all nodes except those lying in the 
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region which includes the slot(s). At nodes lying in this region, U is put equal to half 
of its value at  the inlet and V is taken in the downward direction with a magnitude 
equal to one-fourth of U a t  the inlet. The choice of the initial value of V is rather 
arbitrary, but the choice of U takes care of the conservation of mass. Density and 
viscosity are constant in the present computations. 

3.2.2. Grid 
For the purpose of computation, the length of the upper channel ahead of the slot 

is taken to be the same as in the experiments, i.e. 245 mm. The slot width varies 
between 12.5 mm and 100 mm. The length of the lower channel was chosen such that 
the total length from the inlet to the exit is 800 mm. The justification for the choice 
of this length is given in the final paragraph of 83.2.3. 

Calculations for w/h = 1 were performed with grid sizes of 18 x 18, 22 x 22, 26 x 26 
and 30 x 30. Trial runs showed that for stability of computation the spacing between 
vertical grid lines should be smallest in the portion occupied by the slot and then it 
should increase gradually as the distance from the slot increases in both the upstream 
and downstream directions. Typical spacing for a 30 x 30 grid is shown in figure 11. 
The horizontal grid lines are chosen such that the spacing between them is smaller 
near the walls. Following Cebeci & Smith (1974) the grid spacing is chosen such that 
i t  increases in geometric progression as one moves from the wall to the centre of the 
upper or the lower channel. Thus, 
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where YJ = distance of J t h  point from the wall, Y, = distance of centre from the 
wall, and N = number of grid points from the wall to the centre of channel. Q was 
chosen as 1.39. This gave a distance of 0.5 mm between the wall and the nearest grid 
line when the grid size was 30 x 30 (see figure 1 1  d ,  e ) .  

In the two-slot case a plate 25 mm long and 1.5 mm thick separates the two slots. 
The choice of grid points for this case is shown in figure 11 ( b ,  e ) .  It is seen that the 
V-nodes lie on the top and bottom surfaces of the plate and along the centreline of 
the plate (see enlarged view in figure 11 e ) .  The U-nodes lie on the vertical edges and 
on lines midway between the centreline and the top and bottom edges of the plate. 
The grid points for the three-slot case, shown in figure 11 ( c ) ,  are obtained in a similar 
way. 

3.2.3. Checks on computations 
To produce numerical stability, the proper values of the under-relaxation factors 

were found by trials. Pun & Spalding (1977) have suggested a value of 0.5 for this 
factor, but a smaller value was needed when w / h  was two or more. 

Convergence was taken to be achieved when the highest sum of normalized 
residual sources along a line was less than 0.005. This required about 80 to 100 
iterations. Onc> computation takes about 6 min of CPU time on an IBM370/155 
computer. It was also found that the values of U ,  V and p at a monitoring point, 
located at  the middle of the slot, were constant for about the last twenty 
iterations. 

To check whether the results are independent of the grid size, the computations 
were carried out for w/h = 1 with 18 x 18, 22 x 22, 26 x 26 and 30 x 30 grids. The 
profiles of the axial velocity a t  a station in the middle of the slot are shown in figure 
12. Significant differences are found between the profiles for 18 x 18 and 22 x 22 grids. 
The differences between profiles for 22x22  and 26x26  grids are small and those 
between 26 x 26 and 30 x 30 are not noticeable. Hence a 30 x 30 grid was used in 
subsequent computations. 

If the length of the computational domain is not sufficient, then the calculations 
would not be independent of it. Based on experience of Balachandran (1985) it  was 
found that a length of about fourteen channel heights behind t,he slot was sufficient 
to obtain results that are independent of this length, This requires a total length, 
from entry to exit, of 720 mm. Hence a total length of 800 mm was chosen for all 
cases. It was found, after the computations, that the static pressure was constant 
over the entire cross-section for the last three stations along X-axis. This confirms 
that the chosen length of the channel was sufficient. 

3.3. Results and discussion 
3.3.1. Single-slot case 

The computations were carried out for w/h = 0.5 to 4 a t  Reynolds number 
between 300 and 2000 which is the range covered in the flow-visualization studies. 
Computations were also done a t  Re = 175 for w/h = 0.5. 

The computer output gives the values of U ,  V and p a t  various points in the flow 
field. From the velocity distributions, streamline patterns have been obtained which 
give the shape and extent of the regions of recirculating flow. The variation of 
pressure loss with w/h and Re can also be found from the computed results. 

The streamline patterns for w/h = 0.5, 1.0 and 3.5 at selected Reynolds numbers 
arc shown in figures 13-15. The quantity $ in these figures is the stream function. 
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FIQURE 13. Computed flow pattern (w/h  = 0.5). (a )  Re = 175, ( b )  600, ( c )  2000. 
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FIGURE 14. Computed flow pattern (w/h = 1.0). (a) Re = 300, (b) 600, (c) 2000. 
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FIGURE 15. Computed flow pattern (w/h = 3.5). (a) Re = 300, (b) 600, (c) 2000 
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FIGURE 16. Computed flow pattern - two-dot case. (a )  Re = 250, ( b )  600, (c) 2000 

The value of $ is zero on the top wall and is chosen as 25 on the bottom wall. The 
variations of the lengths L,, L, and L, of the recirculating regions obtained from 
computed flow patterns are shown by solid lines in figures 6 and 7. It is seen that the 
length L, decreases as wlh increases; at low Reynolds numbers L, is zero for w l h  
greater than three (figure 7a,  b ) .  The lengths L2 and L, increase with wlh.  As regards 
the influence of Reynolds number (figure 6), the length L, increases gradually; L, 
remains practically constant but L, shows a slight increase. 

Defining the pressure loss coefficient C,, as 

where pi and p e  are the static pressures across the inlet and exit stations respectively, 
p is the density and Ui is the velocity a t  the inlet, the computations show that Cp, 
decreases with Reynolds number. For example a t  wlh  = 1.0, the values of C,, are 
6.1, 4.76, 4.28, 4.04 and 3.9 a t  Re = 300, 600, 1000, 1500 and 2000 respectively. A t  
a given Reynolds number C,, decreases with wlh.  For example a t  Re = 600 the 
values of C,, are 9.68, 4.76, 3.32, 2.98 and 2.82 for w l h  = 0.5, I ,  2.0, 3.0 and 4.0 
respectively. 

3.3.2. Multiple-slot cases 

The streamline patterns a t  selected Reynolds numbers are plotted for the two- and 
three-slot cases in figures 16 and 17.  Additional regions of recirculating flow are 
predicted below the plates forming the slots. The depths of these regions increase as 
Re increases. The changes in lengths L, and L, with Re are similar to those in the 
single-slot case, viz. L, increases with Re and L, remains constant. However L, 
increases considerably with Re (figures 16 and 17) .  
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FIGURE 17. Computed flow pattern - three-slot case. ( a )  Re = 267, ( b )  600, ( c )  2000. 

Two-slot case Three-slot case 

Re mJm mz/m mJm mz/m TkJTFl 

300 0.364 0.636 0.18 0.228 0.592 
600 0.404 0.596 0.20 0.248 0.552 

2000 0.42 0.58 0.24 0.248 0.512 

TABLE 1. Mass flow rates through slots 

Let ml, m2, m3 be the mass flow rates through the first, second and third slot 
respectively and m be the total rate of mass flow through the channel. From the 
values of the stream functions shown in figures 16 and 17 the rates of mass flow given 
in table 1 can be obtained. It is seen that the fraction of mass flowing through the 
second slot in the two-slot case and through the third slot in the three-slot case, 
decreases as the Reynolds number increases. This is rather unexpected, as one would 
expect that with increase in Re a larger portion of mass flow would take place 
through the latter slots as velocity and consequently the inertia of the flow increases 
with Re. But the observed feature is due to the large increase in the length L, and 
the large rccirculating flow near corner C, which restrict the available region for the 
fluid flow and consequently decrease the mass flow through the latter slots. 

4. Comparison of experimental and computed flow patterns 
A comparison of the flow patterns obtained from flow-visualization studies and 

those from numerical computations is presented in this section. Considering first the 
single-slot case it is seen that a t  low Reynolds number, when vortex shedding is 
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absent, there is qualitative agreement between the flow patterns obtained in the 
flow-visualization study and the computed flow patterns, e.g. figures 3 ( a )  and 14 (a )  ; 
4 (a )  and 13 (a )  ; 5 ( a )  and 15 ( a )  ; 5 ( b )  and 15 ( b ) .  Quantitatively the lengths L,, L, and 
L, obtained from the corresponding patterns are nearly equal (see figure 7a, b) .  As 
Re increases the vortex shedding begins. When this occurs the two flow patterns 
show some differences, the details of which depend on wlh. For wlh  = 1.0, the vortex 
shedding begins around Re = 600 near corner C,. The length of the recirculating 
region decreases as seen in figures 3 ( c )  and 6 ( a ) .  With further increase in Re, L,  
increases and approximates the computed value. The observed and computed values 
of L, are almost equal a t  all Reynolds numbers (figure 6 a ) .  Considering the case when 
wlh  = 3.5, it  is seen that the vortex shedding begins a t  around Re = 1000 at  corner 
C,. The experimental and computed patterns begin to  differ in that region. However 
L,, L, and L, are nearly the same in the two cases (figure 6 c ) .  For w l h  = 0.5, L, is 
nearly the same for both theory and experiment over the Re range covered (figure 
6 b ) .  However, the theory gives L, = 0.5h whereas the photographs show that 
L, % h a t  all Reynolds numbers. 

Comparing figures 8 and 16 and figures 9 and 17 for the two- and three-slot cases, 
i t  is seen that there is an overall agreement in the general flow patterns predicted by 
the theory and observed in experiments. But the present theory is unable to predict 
the flow details in the regions below the plates. I n  these regions there is rolling up, 
formation and shedding of vortices. 

The present numerical scheme considers the steady flow solution of Navier-Stokes 
equations. As such it cannot predict the onset of vortex shedding and its frequency. 
But it is very interesting to find that, except for a small range around the Reynolds 
number where vortex shedding begins, the computed flow patterns closely display 
gross features of the actual flow field. This is because in the present case the flow is 
confined between walls and the fact that the same mass flow has to pass through all 
sections of the passage imposes a severe constraint on the extent and shape of the 
recirculating regions. Thus for internal flows, where the depth of the recirculating 
region is a sizeable part of the height of the passage, one need not solve the time- 
dependent Navier-Stokes equations, which is costly and time consuming. This is 
perhaps the reason why the calculations of turbulent flow through passages (see 
Launder & Spalding 1974) and even around bluff bodies in ducts (see Sampath & 
Ganesan 1986) carried out using steady-state equations give good predictions of 
velocity fields and regions of recirculating flow. However, for detailed simulations of 
free flow past bluff bodies, one needs to solve the time-dependent Navier-Stokes 
equations (see Davis & Moore 1982). 

It is seen that the present numerical scheme, though able to predict the gross 
features of the flow, is in general, not able to reproduce the finer details of the regions 
of the recirculating flow. This is perhaps because this numerical scheme is of first- 
order accuracy. Better predictions could be expected by using higher-order methods. 
Particularly, caution is needed while using first-order schemes to predict turbulent 
recirculating flows (Castro 1979). 

5.  Conclusions 
The following conclusions can be drawn from the above investigation of laminar 

flow through slots using flow visualization and numerical solution of steady-flow 
Navier-Stokes equations. 

(i) Visualization brings out several interesting features of flow through slots. The 
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relative width of the slot w / h  and the Reynolds number considerably influence the 
flow field in general and the accompanying regions of recirculating flows in 
particular. At very low Reynolds numbers there is no vortex shedding but the 
shedding starts a t  higher Reynolds number. The value of Reynolds number a t  which 
the shedding starts and also the corner a t  which it starts depend on w/h.  The shape 
of the recirculating region, near the corner where vortex shedding begins, undergoes 
changes due to shedding. But with further increase in Reynolds number the depth 
of the recirculating region remains nearly constant and the length increases 
gradually, tending towards a constant value as Re approaches 2000. 

(ii) The numerical results obtained by solving steady-flow Navier-Stokes 
equations qualitatively predict the observed flow patterns and there is reasonable 
quantitative agreement with some of the gross features. 

The authors thank Dr. T. K. Bose for helpful discussions and Mr George Denny for 
help during early phases of computations. 
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